Decrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model
Authors
Abstract:
Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to counterbalance this condition. Methods: Bone marrow stromal cells were transdifferentiated into neurospheres and then into neural stem cells and later were differentiated into OLCs using triiodothyronine and transplanted into the spinal cord contusion rats. The post-injury functional recovery was explored and compared with the control group using Basso-Beattie-Bresnahan and narrow beam behavioral tests. At the end of 12th week, spinal cord segments T12-L1 were histomorphologically studied by immunohistochemistry. Results: Motor improvement was more obvious during 2nd to 4th weeks and got less prominent during 4th to 12th weeks. Histomorphometric findings indicated that cavity formation decreased in epicenter of transplantation area in experimental groups in comparison with the control groups. Conclusion: The findings obtained in the present study showed that OLC therapy is a potential approach in the treatment of spinal cord traumatic injuries.
similar resources
Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord.
Lesions appearing in the CNS of patients in the chronic phase of the inflammatory, demyelinating disease multiple sclerosis often fail to repair, resulting in neurological dysfunction. This failure of remyelination appears, in many cases, to be due not to the destruction of the local oligodendrocyte precursor population, a source for new myelin-forming cells, but to the failure of the precursor...
full textSpinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain.
Neuropathic pain from injury to the peripheral and CNS represents a major health care issue. We have investigated the role of IL-33/IL-33 receptor (ST2) signaling in experimental models of neuropathic pain in mice. Chronic constriction injury (CCI) of the sciatic nerve induced IL-33 production in the spinal cord. IL-33/citrine reporter mice revealed that oligodendrocytes are the main cells expr...
full textReconditioning effect of oligodendrocyte-like cell transplantation in acute spinal cord injury in rats
To observe the reconditioning effect of oligodendrocyte-like cell transplantation in acute spinal cord injury in rats, bone marrow mesenchymal stem cells were differentiated into oligodendrocyte-like cells induced by cytokines including insulin-like growth factor-1(IGF-1). Rats with acute spinal cord injury were treated with the oligodendrocyte-like cells for 8 weeks by local injection. The the...
full textDorsal spinal cord inhibits oligodendrocyte development.
Oligodendrocytes are the myelinating cells of the mammalian central nervous system. In the mouse spinal cord, oligodendrocytes are generated from strictly restricted regions of the ventral ventricular zone. To investigate how they originate from these specific regions, we used an explant culture system of the E12 mouse cervical spinal cord and hindbrain. In this culture system O4(+) cells were ...
full textBone Marrow Stromal Cell Transdifferentiation into Oligodendrocyte-Like Cells Using Triiodothyronine as a Inducer with Expression of Platelet-Derived Growth Factor α as a Maturity Marker
Background: The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). Methods: The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic a...
full textOct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model.
The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent ...
full textMy Resources
Journal title
volume 22 issue 4
pages 246- 257
publication date 2018-07
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023